Contents

1.1 Memory Transactions 1
1.1.1 Concurrent Programming 1

1.1.2 Design Prioritieso 3

1.1.3 Mutual Exclusion 4

1.1.4 Speculative execution 4

1.1.5 The development of Transactional Memory 5

1.1.6 Software Transactional Memory 5

1.1.7 Hardware Transactional Memory 6

1.1.8 Ease of programming L 8
Bibliography 10

1.1 Memory Transactions

Concurrent programs that deliver scalable speed-up on Chip Multi-Processors are
difficult to develop. As the number of processing cores in a Chip Multi-Processor
increases so does the potential speed-up from concurrent execution but there are
few programs that actually achieve scalable concurrent speed-up when executing

on a Chip Multi-Processor.
Transactional Memory is a programming methodology that promises to make
concurrent programming easier and concurrent programs more scalable.

The main contribution of this section is to examine the challenges faced by
concurrent programming methodologies. This section focuses on whether Trans-

actional Memory systems really deliver on these promises.

2 CONTENTS

1.1.1 Concurrent Programming

This thesis examines the problem of getting the processors of a Chip Multi-
Processor to work together on a single program and complete the program in less
time than it would take a single processor working alone. The program can be
divided into tasks which are simultaneously executed by the processors and these
tasks may or may not be interdependent.

The most commonly used concurrent programming technique is mutual ex-
clusion. Unfortunately, mutual exclusion limits the scalability of a concurrent
program and concurrent programming using mutual exclusion is regarded as dif-
ficult.

Section 1.1.3 introduces mutual exclusion.

Transactional Memory is a technique to support speculative execution that
can be used as an alternative to mutual exclusion. It facilitates scalable con-
current execution by allowing the simultaneous execution of tasks that may be
interdependent.

Section 1.1.4 introduces speculative execution and section 1.1.5 introduces
Transactional Memory.

Software Transactional Memory systems provide a software framework for pro-
grammers to construct concurrent programs that can be executed speculatively.
However, the overheads of supporting speculative execution entirely in software
often exceed the benefits of concurrent execution.

Section 1.1.6 discusses the claim that Software Transactional Memory makes
concurrent programming easier.

Hardware Transactional Memory systems support concurrent execution by
providing a hardware environment in which concurrent programs can be executed
speculatively. The engineering challenges that must be overcome by Hardware
Transactional Memory are significant and the commercial barriers to adoption
are high.

Section 1.1.7 discusses the claim that Hardware Transactional Memory makes
concurrent programming easier.

Transactional Memory can make programming easier by freeing the program-
mer from having to reason about locks, but concurrent programming using Mem-
ory Transactions is not necessarily easier than concurrent programming using
mutual exclusion.

Section 1.1.8 discusses the claim that Transactional Memory makes concurrent

1.1. MEMORY TRANSACTIONS 3

programming easier.

Research carried out in both the private and public sectors has yet to produce
convincing evidence that Transactional Memory systems are making progress
towards delivering on their promise of scalability, because the overheads of sup-
porting concurrent execution exceed the benefits of concurrent execution. They
also fail to deliver on their promise of improved programmer productivity, because
concurrent programming using Memory Transactions is no easier than concurrent

programming using mutual exclusion.

1.1.2 Design Priorities

Transactional Memory research is founded on the premise that speculative ex-
ecution is necessary to support scalable concurrent execution on Chip Multi-
Processors and it has the goal of making concurrent programming easier. This
thesis does not doubt this premise nor question this laudable goal, but it does
question the priorities that motivate the design of Transactional Memory systems.

Transactional Memory proposals prioritise some aspects of system design at

the expense of others:

e They focus on the speculative execution of programs, at the expense of the

interaction with external systems.

e They choose to buffer speculative state, at the expense of increased memory
bandwidth.

e They sacrifice strict transactional isolation, at the expense of semantic sim-

plicity.

e They centralise the responsibility for transaction management, at the ex-

pense of scalability.

e They focus on ease of programming per se, at the expense of total produc-

tivity across the software development cycle.

Given the disappointing progress of Transactional Memory systems to date it
is reasonable to suggest that some of the priorities can be re-assessed and that
designs based on a different set of priorities should be considered.

Some aspects of the design of a concurrent system that need to be considered

are:

4 CONTENTS

e How to interact with entities outside the concurrent system?
e How to maintain shared state and support speculative execution?
e How to provide access to shared state with intuitive concurrent semantics?

e How to implement concurrency control to guarantee correct concurrent ex-

ecution?

e How to implement contention management to eliminate progress patholo-

gies?
e How to marshall work and schedule concurrent execution?

e How to integrate a concurrent programming solution into the software de-

velopment cycle?

This thesis is divided into chapters, each of which considers one aspect of
the design of a concurrent system. The first section of each chapter examines
how the priorities have influenced the design of concurrent systems. Subsequent
sections develop an alternative approach based on a different interpretation of

the priorities.

1.1.3 Mutual Exclusion

The most commonly used mechanism to support concurrent execution is mutual
exclusion. Mutual exclusion does not permit tasks with possible dependencies to
execute simultaneously. Instead, it permits those sections of a program in which
there are known to be no conflicting operations to execute in parallel and ensures
that the critical sections of the program, that may have dependencies, execute
serially.

If there is the slightest possibility of a dependency between tasks then they
must always be executed serially. Mutual exclusion ensures the serial execution
of critical sections regardless of how often dependencies between tasks actually
arise. As the number of processes is scaled up, the execution time of the program

code within the critical sections dominates and the benefit of parallel execution
is diminished. This effect is a consequence of Amdahl’s law [Amd67] [HMOS].

1.1. MEMORY TRANSACTIONS 5

1.1.4 Speculative execution

An alternative to mutual exclusion should be capable of executing tasks opti-
mistically. A concurrent program can safely speculate that a task is not affected
by tasks running on other processors, provided it has a mechanism to re-execute
the task should that speculation prove incorrect.

To discover the dependencies between tasks, information must pass between
the processors performing them, while the program executes. Processors cannot
pass information to each other instantaneously, so each task has a slightly de-
layed view of the progress that tasks on other processors are making. This delay
necessitates speculative execution because if a processor were to wait for a task,
on which it is possibly dependent, to complete then there would be little benefit

from executing on multiple processors.

1.1.5 The development of Transactional Memory

Research into Transactional Memory is comprehensively described in a book en-
titled ‘Transactional Memory’ [HLR10].

The following are some of the significant developments in the history of Trans-
actional Memory:

Lomet proposed the use of transactions within programs [Lom77].

Weihl proposed the use of transactions to support concurrent programming
[WLS83].

Stone recognised that Memory Transactions are dis-contiguous multi-word
atomic operations [SSHT93]. Computer hardware typically provides atomic op-
erations that act on a single word or a contiguous double-word in memory.

Herlihy and Moss proposed Hardware Transactional Memory [HM93]. A
Hardware Transactional Memory implements Memory Transactions by using mod-
ified hardware to support speculative execution.

Shavit proposed the conventional model of Software Transactional Memory
[ST95]. A Software Transactional Memory implements Memory Transactions
entirely in software by buffering speculative state in core or in a log.

Lie proposed Hybrid Transactional Memory [LA04]. Recent Hardware Trans-
actional Memory systems are typically hybrids involving both compiler and run-

time support for Memory Transactions executing on modified hardware.

6 CONTENTS

1.1.6 Software Transactional Memory

Software Transactional Memory systems provide a framework and a run-time sys-
tem to support the speculative execution of Memory Transactions. Dependencies
between tasks are checked at run-time. If conflicting operations are found then
the tasks containing them are re-executed resulting in wasted work.

The influential paper “Software Transactional Memory: Why is it only a
research toy?” was written by the team responsible for IBM’s Software Trans-
actional Memory system [CBMT08]. They compared the performance of their
Software Transactional Memory with comparable systems from Intel and Sun
[ARTO08] [DDS06]. They examined the performance of programs from the STAMP
benchmark suite [CMCKOO8]. This benchmark suite contains programs that are
good candidates for concurrent execution. The team does not discuss the inter-
action with the Network or Operating System because the benchmark programs
are monolithic.

The team found that none of the Software Transactional Memory systems they
examined overcame the overhead of supporting Memory Transactions. They also
found that, as more processors were added to the concurrent system, the over-
heads of concurrent execution increased faster than the benefits, so the Software
Transactional Memory systems they studied did not exhibit scalable concurrent
execution.

The team concluded that complex concurrent semantics, weak atomicity,
transactional pathologies, the interaction with serial code, memory reclamation
and the support for legacy binaries are all major barriers to the development of
Software Transactional Memory.

The conclusion of the IBM paper is that Software Transactional Memory does
not achieve its goal of supporting scalable concurrent execution. Soon after pub-
lication of the IBM paper Microsoft cancelled its Software Transactional Memory
research project without publishing any results [Duf10].

This thesis examines why Software Transactional Memory fails to achieve this

goal and explores alternatives that might make the goal achievable in the future.

1.1.7 Hardware Transactional Memory

Hardware Transactional Memory systems use a combination of techniques in-

cluding run-time systems, modified programs and modified hardware to support

1.1. MEMORY TRANSACTIONS 7

speculative execution. The original goal of Hardware Transactional Memory was
to facilitate the concurrent execution of critical sections in programs written
for mutual exclusion without program modification. Unfortunately, programs
written for mutual exclusion rarely contain enough information about dependent

variables for this to be achievable.

The influential paper “Early experience with a commercial Hardware Transac-
tional Memory implementation” was written by the team responsible for SUN’s
ROCK processor [DLMN09]. The ROCK processor is a Chip Multi-Processor
which aims to support concurrent processing. The processor contained hardware
support for speculative execution and explicit support for Memory Transactions.
The team evaluated the system using programs from the STAMP benchmark
suite [CMCKOO8].

Prior to the ROCK processor Hardware Transactional Memory research was
restricted to architectural simulation. A hardware architecture can be simulated
in software by a virtual machine on which the target program runs. Typically, the
proposed hardware support for Hardware Transactional Memory is included in the
virtual machine and the execution time for benchmark applications is determined
by simulation. The main problem with architectural simulation is that one cannot
be sure that the results will be similar to those that would be obtained were the
proposed modifications to be implemented in physical hardware. This is especially
true of simulated Chip Multi-Processors because cycle accurate simulation of the
shared memory subsystem is extremely difficult to achieve [Jac09]. The ROCK
processor was seen, by the Transactional Memory research community, as the
most significant Hardware Transactional Memory design to be implemented in

real hardware.

The team reported some speed-up on the benchmarks they tested. They also
demonstrated some scalability. However, the speed-ups were not very impressive
and a great deal of program adaptation was required to obtain them. The team

concluded that Hardware Transactional Memory is a promising area of research.

The ROCK project was cancelled a few months after publication of the paper
which might suggest that support for Hardware Transactional Memory in com-
mercial Chip Multi-Processors is not considered economically viable [Van09]. It
might also suggest that the benchmark results obtained from the hardware imple-

mentation were disappointing when compared to those of architectural simulation

[And09].

8 CONTENTS

Many Transactional Memory research papers are able to demonstrate scalable
speed-up from the concurrent execution of benchmark applications. There is
no doubt that Hardware Transactional Memory implementations can speed-up
the concurrent execution of Transactional Memory benchmark programs, such
as those in the STAMP or DaCapo benchmark suites [CMCKOO08] [BGH'06].
However, these benchmark applications are not general applications. Performance
results obtained using them are not indicative of the performance one might
expect from the concurrent execution of an operating system or a game.

The conclusion of the ROCK paper is that Hardware Transactional Memory
does not achieve its goal of supporting scalable concurrent execution.

This thesis examines why Hardware Transactional Memory fails to achieve
this goal and explores alternatives that might make the goal achievable in the

future.

1.1.8 Ease of programming

Concurrent programs are difficult to write because using mutual exclusion to seri-
alise access to shared data is error prone. Concurrent programs must implement
mutual exclusion, correctly, to avoid the run-time problem of data races and the
pathology of deadlock. Concurrent programming must be done at a very low level
of abstraction, because locks are not composable, so the fundamental interaction
with the program cannot be hidden by abstraction [HMPJHO5].

Ease of programming is a subjective criterion for determining the efficacy of
Transactional Memory systems. Writing a concurrent program using Memory
Transactions can be just as difficult as writing one using mutual exclusion as it
is often very difficult to break an algorithm into transactions of sufficient size to
be worth scheduling. Transactional Memory systems are also prone to run-time
pathologies such as live-lock and priority inversion.

Research publications often claim that programming concurrent systems using
Transactional Memory is somehow easier than writing the same algorithm using
locks. In a sample of 25 papers chosen at random from the on-line transactional
memory bibliography we found that 17 asserted that Transactional Memory made
concurrent programming easier [JBR10]. However, none of the papers in our sam-
ple contained any explicit justification for this claim and most referred to it only
in the introductory section. Indeed, many of the papers contained descriptions of

syntax and semantics that would indicate precisely the opposite to be the case.

1.1. MEMORY TRANSACTIONS 9

Many Transactional Memory research papers claim that concurrent program-
ming using Memory Transactions is easier than using mutual exclusion. However,
very few papers support this assertion with quantitative analysis or empirical re-
sults. In an exceptional paper Rossbach describes experiments that showed that
students found programming a concurrent algorithm using Software Transactional
Memory was just as difficult as constructing the same algorithm using mutual ex-
clusion [RHWO09]. Rossbach was not able to show that Memory Transactions were
easier to use than mutual exclusion.

The claim that transactional programming is easier than using mutual ex-
clusion is largely based on experience of programmers using transactions to pro-
gram Relational Database systems which is undoubtedly easier than accessing
a database using mutual exclusion. Relational Database systems that support
serialisable transactional execution have largely replaced earlier systems, such
as CICS, in which the programmer is responsible for enforcing mutual exclusion
[GRI3]. However, Relational Database systems and Transactional Memory sys-
tems have very little in common as a Memory Transaction coded using an atomic
section is very different from a database transaction specified as a Structured
Query Language (SQL) statement. Transactional programming is easier in the
context of a database system but this does not necessarily mean that using Mem-
ory Transactions make concurrent programming easier in the context of a Chip
Multi-Processor.

If we compare the specification of TCC [HCW'04], an early Transactional
Memory system, with that of openTM [BMT"07], which is a more recent sys-
tem from the same institution, then we find the more recent specification to be
more complex. So, the claim that Transactional Memory systems have the po-
tential to make concurrent programming easier does not appear to be based on

an extrapolation of the current trend.

Bibliography

[Amd67]

[And09)]

[ARTO0S]

[BGH*06]

[BMT+07]

Gene M. Amdahl. Validity of the single processor approach to
achieving large scale computing capabilities. In AFIPS 67 (Spring):
Proceedings of the April 18-20, 1967, spring joint computer confer-
ence, pages 483485, New York, NY, USA, 1967. ACM.

Mark Anderson. Sun can kill rock, but not its memory tech. IEEE
Spectr., June 2009.

Adl-Tabatabai Ali-Reza and Xinmin Tian. The intel software trans-
actional memory compiler.
http://software.intel.com/file/8097, November 2008.

S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z.
Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss,
A. Phansalkar, D. Stefanovi¢, T. VanDrunen, D. von Dincklage, and
B. Wiedermann. The DaCapo benchmarks: Java benchmarking de-
velopment and analysis. In OOPSLA ’06: Proceedings of the 21st
annual ACM SIGPLAN conference on Object-Oriented Programing,
Systems, Languages, and Applications, pages 169-190, New York,
NY, USA, October 2006. ACM Press.

Woongki Baek, Chi Cao Minh, Martin Trautmann, Christos
Kozyrakis, and Kunle Olukotun. The openTM Transactional Appli-
cation Programming Interface. In Proceedings of the 16th Interna-
tional Conference on Parallel Architecture and Compilation Tech-
niques, PACT ’07, pages 376-387, Washington, DC, USA, 2007.
IEEE Computer Society.

10

http://software.intel.com/file/8097

BIBLIOGRAPHY 11

[CBM*08]

[CMCKOO08]

[DDS06]

[DLMNOY]

[Duf10]

[GR93]

[HCW+04]

[HLR10]

[HM93]

Calin Cascaval, Colin Blundell, Maged Michael, Harold W. Cain,
Peng Wu, Stefanie Chiras, and Siddhartha Chatterjee. Software
Transactional Memory: Why is it only a research toy? Communi-
cations of the ACM, 51(11):40-46, November 2008.

Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle
Olukotun. STAMP: Stanford transactional applications for multi-
processing. In IISWC ’08: Proceedings of The IEEE International
Symposium on Workload Characterization, September 2008.

O. Shalev D. Dice and N. Shavit. Transactional locking ii. In
Proc. of the 20th International Symposium on Distributed Comput-
ing (DISC 2006), pages 194208, 2006.

Dave Dice, Yossi Lev, Mark Moir, and Daniel Nussbaum. Early
experience with a commercial hardware transactional memory im-
plementation. In ASPLOS °09: Proceeding of the 14th international
conference on Architectural support for programming languages and
operating systems, pages 157-168. ACM, March 2009.

Joe Duffy. A (brief) retrospective on tranasactional memory.

http://www.bluebytesoftware.com, January 2010.

Jim Gray and Andreas Reuter. Transaction Processing: Concepts

and Techniques. Morgan Kaufmann, 1993.

Lance Hammond, Brian D. Carlstrom, Vicky Wong, Ben Hertzberg,
Mike Chen, Christos Kozyrakis, and Kunle Olukotun. Programming
with transactional coherence and consistency (tcc). In ASPLOS-XI:
Proceedings of the 11th international conference on Architectural
support for programming languages and operating systems, pages
1-13. ACM Press, October 2004.

Tim Harris, James R. Larus, and Ravi Rajwar. Transactional Mem-
ory, 2nd edition. Synthesis Lectures on Computer Architecture.
Morgan & Claypool Publishers, 2010.

Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Ar-

chitectural support for lock-free data structures. In Proceedings of

http://www.bluebytesoftware.com

12

[HMO8]

[HMPJHO5]

[Jac09]

[JBR10]

[LAO4]

[Lom77]

[RHWO09]

[SSHT93]

[ST95]

BIBLIOGRAPHY

the 20th Annual International Symposium on Computer Architec-
ture, pages 289-300, May 1993.

Mark D. Hill and Michael R. Marty. Amdahl’s law in the multicore
era. [EEE COMPUTER, 2008.

Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Her-
lihy. Composable memory transactions. In PPoPP ’05: Proceedings
of the tenth ACM SIGPLAN symposium on Principles and practice
of parallel programming, pages 48-60, New York, NY, USA, 2005.
ACM.

Bruce L. Jacob. The Memory System: You Can’t Avoid It, You
Can’t Ignore It, You Can’t Fake It. Synthesis Lectures on Computer
Architecture. Morgan & Claypool Publishers, 2009.

Tim Harris Jayaram Bobba, Mark Hill and Ravi Rajwar. The
transactional memory bibliography. http://www.cs.wisc.edu/

trans-memory/biblio/index.html, June 2010.

Sean Lie and Krste Asanovic. Hardware support for unbounded

transactional memory. Technical report, Masters thesis, MIT, 2004.

D. B. Lomet. Process structuring, synchronization, and recovery

using atomic actions. SIGPLAN Not., 12(3):128-137, 1977.

Christopher Rossbach, Owen Hofmann, and Emmett Witchel. Is
transactional memory programming actually easier? In WDDD 09:
Proc. 8th Workshop on Duplicating, Deconstructing, and Debunk-
1ng, jun 2009.

Janice M. Stone, Harold S. Stone, Philip Heidelberger, and John
Turek. Multiple reservations and the oklahoma update. IEEE Par-
allel Distrib. Technol., 1(4):58-71, 1993.

Nir Shavit and Dan Touitou. Software Transactional Memory. In
Proceedings of the 14th ACM Symposium on Principles of Dis-
tributed Computing, pages 204-213, August 1995.

http://www.cs.wisc.edu/trans-memory/biblio/index.html
http://www.cs.wisc.edu/trans-memory/biblio/index.html

BIBLIOGRAPHY 13

[Van09)]

[WL83]

Ashlee Vance. Sun is said to cancel big chip project. The New York
Times, June 2009.

William Weihl and Barbara Liskov. Specification and implementa-
tion of resilient, atomic data types. In SIGPLAN ’83: Proceedings
of the 1983 ACM SIGPLAN symposium on Programming language

1ssues in software systems, pages b3-64, jun 1983.

	Memory Transactions
	Concurrent Programming
	Design Priorities
	Mutual Exclusion
	Speculative execution
	The development of Transactional Memory
	Software Transactional Memory
	Hardware Transactional Memory
	Ease of programming

	Bibliography

