
Contents

4 Accessing State 2

Bibliography 3

1



Chapter 4

Accessing State

Weakly isolated concurrent programs are more difficult to write than strongly

isolated concurrent programs. Transactional Memory systems are weakly iso-

lated so they have complex concurrent semantics and are prone to pathologies

which make their run-time behaviour unpredictable. This chapter describes how

isolating shared state in linearizable objects provides a concurrent programming

model that has intuitive concurrent semantics and that is not prone to isolation

pathologies.

Section 4.1 identifies weak isolation as the reason why Transactional Memory

systems have complex concurrent semantics and are prone to pathologies.

Section 4.2 describes how Immutable Data Structures can implement lineariz-

able objects.

Section 4.3 describes a check pointing technique which relies on the composi-

tion of Immutable Data Structures.

Section 4.4 compares a concurrent application which calculates the minimum

spanning tree of a graph with a similar application which uses Transactional

Memory.

2

http://www.transactionalmemory.com/resources/LO
http://www.transactionalmemory.com/resources/PDS
http://www.transactionalmemory.com/resources/E
http://www.transactionalmemory.com/resources/MST


Bibliography

3


	Accessing State
	Bibliography

